000 03722nam a22006495i 4500
001 978-3-540-78319-0
003 DE-He213
005 20160302163731.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 _a9783540783190
_9978-3-540-78319-0
024 7 _a10.1007/978-3-540-78319-0
_2doi
050 4 _aQA297-299.4
072 7 _aPBKS
_2bicssc
072 7 _aMAT021000
_2bisacsh
072 7 _aMAT006000
_2bisacsh
082 0 4 _a518
_223
100 1 _aBoffi, Daniele.
_eauthor.
245 1 0 _aMixed Finite Elements, Compatibility Conditions, and Applications
_h[electronic resource] :
_bLectures given at the C.I.M.E. Summer School held in Cetraro, Italy June 26–July 1, 2006 /
_cby Daniele Boffi, Franco Brezzi, Leszek F. Demkowicz, Ricardo G. Durán, Richard S. Falk, Michel Fortin ; edited by Daniele Boffi, Lucia Gastaldi.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2008.
300 _aX, 244 p. 36 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1939
505 0 _aMixed Finite Element Methods -- Finite Elements for the Stokes Problem -- Polynomial Exact Sequences and Projection-Based Interpolation with Application to Maxwell Equations -- Finite Element Methods for Linear Elasticity -- Finite Elements for the Reissner–Mindlin Plate.
520 _aSince the early 70's, mixed finite elements have been the object of a wide and deep study by the mathematical and engineering communities. The fundamental role of this method for many application fields has been worldwide recognized and its use has been introduced in several commercial codes. An important feature of mixed finite elements is the interplay between theory and application. Discretization spaces for mixed schemes require suitable compatibilities, so that simple minded approximations generally do not work and the design of appropriate stabilizations gives rise to challenging mathematical problems. This volume collects the lecture notes of a C.I.M.E. course held in Summer 2006, when some of the most world recognized experts in the field reviewed the rigorous setting of mixed finite elements and revisited it after more than 30 years of practice. Applications, in this volume, range from traditional ones, like fluid-dynamics or elasticity, to more recent and active fields, like electromagnetism.
650 0 _aMathematics.
650 0 _aGlobal analysis (Mathematics).
650 0 _aManifolds (Mathematics).
650 0 _aPartial differential equations.
650 0 _aNumerical analysis.
650 0 _aPhysics.
650 0 _aContinuum physics.
650 1 4 _aMathematics.
650 2 4 _aNumerical Analysis.
650 2 4 _aPartial Differential Equations.
650 2 4 _aNumerical and Computational Physics.
650 2 4 _aClassical Continuum Physics.
650 2 4 _aGlobal Analysis and Analysis on Manifolds.
700 1 _aBrezzi, Franco.
_eauthor.
700 1 _aDemkowicz, Leszek F.
_eauthor.
700 1 _aDurán, Ricardo G.
_eauthor.
700 1 _aFalk, Richard S.
_eauthor.
700 1 _aFortin, Michel.
_eauthor.
700 1 _aBoffi, Daniele.
_eeditor.
700 1 _aGastaldi, Lucia.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783540783145
830 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1939
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-540-78319-0
912 _aZDB-2-SMA
912 _aZDB-2-LNM
999 _c182010
_d182010