000 03207nam a22004815i 4500
001 978-3-540-68829-7
003 DE-He213
005 20160302162932.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 _a9783540688297
_9978-3-540-68829-7
024 7 _a10.1007/978-3-540-68829-7
_2doi
050 4 _aQA273.A1-274.9
050 4 _aQA274-274.9
072 7 _aPBT
_2bicssc
072 7 _aPBWL
_2bicssc
072 7 _aMAT029000
_2bisacsh
082 0 4 _a519.2
_223
100 1 _aKoralov, Leonid.
_eauthor.
245 1 0 _aTheory of Probability and Random Processes
_h[electronic resource] /
_cby Leonid Koralov, Yakov G. Sinai.
250 _aSecond.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2007.
300 _aXI, 358 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aUniversitext,
_x0172-5939
505 0 _aProbability Theory -- Random Variables and Their Distributions -- Sequences of Independent Trials -- Lebesgue Integral and Mathematical Expectation -- Conditional Probabilities and Independence -- Markov Chains with a Finite Number of States -- Random Walks on the Lattice ?d -- Laws of Large Numbers -- Weak Convergence of Measures -- Characteristic Functions -- Limit Theorems -- Several Interesting Problems -- Random Processes -- Basic Concepts -- Conditional Expectations and Martingales -- Markov Processes with a Finite State Space -- Wide-Sense Stationary Random Processes -- Strictly Stationary Random Processes -- Generalized Random Processes -- Brownian Motion -- Markov Processes and Markov Families -- Stochastic Integral and the Ito Formula -- Stochastic Differential Equations -- Gibbs Random Fields.
520 _aA one-year course in probability theory and the theory of random processes, taught at Princeton University to undergraduate and graduate students, forms the core of the content of this book It is structured in two parts: the first part providing a detailed discussion of Lebesgue integration, Markov chains, random walks, laws of large numbers, limit theorems, and their relation to Renormalization Group theory. The second part includes the theory of stationary random processes, martingales, generalized random processes, Brownian motion, stochastic integrals, and stochastic differential equations. One section is devoted to the theory of Gibbs random fields. This material is essential to many undergraduate and graduate courses. The book can also serve as a reference for scientists using modern probability theory in their research.
650 0 _aMathematics.
650 0 _aProbabilities.
650 1 4 _aMathematics.
650 2 4 _aProbability Theory and Stochastic Processes.
700 1 _aSinai, Yakov G.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783540254843
830 0 _aUniversitext,
_x0172-5939
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-540-68829-7
912 _aZDB-2-SMA
999 _c179092
_d179092