000 03315nam a22005655i 4500
001 978-3-540-36239-5
003 DE-He213
005 20160302162402.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 _a9783540362395
_9978-3-540-36239-5
024 7 _a10.1007/3-540-36239-8
_2doi
050 4 _aQC5.53
072 7 _aPHU
_2bicssc
072 7 _aSCI040000
_2bisacsh
082 0 4 _a530.15
_223
100 1 _aIachello, Francesco.
_eauthor.
245 1 0 _aLie Algebras and Applications
_h[electronic resource] /
_cby Francesco Iachello.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2006.
300 _aXIV, 196 p. 26 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Physics,
_x0075-8450 ;
_v708
505 0 _aBasic Concepts -- Semisimple Lie Algebras -- Lie Groups -- Irreducible Bases (Representations) -- Casimir Operators and Their Eigenvalues -- Tensor Operators -- Boson Realizations -- Fermion Realizations -- Differential Realizations -- Matrix Realizations -- Spectrum Generating Algebras and Dynamic Symmetries -- Degeneracy Algebras and Dynamical Algebras.
520 _aThis book, designed for advanced graduate students and post-graduate researchers, provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, a concise exposition is given of the basic concepts of Lie algebras, their representations and their invariants. The second part contains a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book contains many examples that help to elucidate the abstract algebraic definitions. It provides a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators and the dimensions of the representations of all classical Lie algebras.
650 0 _aPhysics.
650 0 _aTopological groups.
650 0 _aLie groups.
650 0 _aQuantum physics.
650 0 _aNuclear physics.
650 0 _aAtomic structure.
650 0 _aMolecular structure.
650 0 _aSpectra.
650 1 4 _aPhysics.
650 2 4 _aMathematical Methods in Physics.
650 2 4 _aTopological Groups, Lie Groups.
650 2 4 _aAtomic/Molecular Structure and Spectra.
650 2 4 _aParticle and Nuclear Physics.
650 2 4 _aQuantum Physics.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783540362364
830 0 _aLecture Notes in Physics,
_x0075-8450 ;
_v708
856 4 0 _uhttp://dx.doi.org/10.1007/3-540-36239-8
912 _aZDB-2-PHA
912 _aZDB-2-LNP
999 _c176943
_d176943