000 | 03300nam a22005055i 4500 | ||
---|---|---|---|
001 | 978-3-540-31511-7 | ||
003 | DE-He213 | ||
005 | 20160302162251.0 | ||
007 | cr nn 008mamaa | ||
008 | 100301s2006 gw | s |||| 0|eng d | ||
020 |
_a9783540315117 _9978-3-540-31511-7 |
||
024 | 7 |
_a10.1007/3-540-31511-X _2doi |
|
050 | 4 | _aQA241-247.5 | |
072 | 7 |
_aPBH _2bicssc |
|
072 | 7 |
_aMAT022000 _2bisacsh |
|
082 | 0 | 4 |
_a512.7 _223 |
100 | 1 |
_aBushnell, Colin J. _eauthor. |
|
245 | 1 | 4 |
_aThe Local Langlands Conjecture for GL(2) _h[electronic resource] / _cby Colin J. Bushnell, Guy Henniart. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2006. |
|
300 |
_aXII, 340 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aGrundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, _x0072-7830 ; _v335 |
|
505 | 0 | _aSmooth Representations -- Finite Fields -- Induced Representations of Linear Groups -- Cuspidal Representations -- Parametrization of Tame Cuspidals -- Functional Equation -- Representations of Weil Groups -- The Langlands Correspondence -- The Weil Representation -- Arithmetic of Dyadic Fields -- Ordinary Representations -- The Dyadic Langlands Correspondence -- The Jacquet-Langlands Correspondence. | |
520 | _aIf F is a non-Archimedean local field, local class field theory can be viewed as giving a canonical bijection between the characters of the multiplicative group GL(1,F) of F and the characters of the Weil group of F. If n is a positive integer, the n-dimensional analogue of a character of the multiplicative group of F is an irreducible smooth representation of the general linear group GL(n,F). The local Langlands Conjecture for GL(n) postulates the existence of a canonical bijection between such objects and n-dimensional representations of the Weil group, generalizing class field theory. This conjecture has now been proved for all F and n, but the arguments are long and rely on many deep ideas and techniques. This book gives a complete and self-contained proof of the Langlands conjecture in the case n=2. It is aimed at graduate students and at researchers in related fields. It presupposes no special knowledge beyond the beginnings of the representation theory of finite groups and the structure theory of local fields. It uses only local methods, with no appeal to harmonic analysis on adele groups. | ||
650 | 0 | _aMathematics. | |
650 | 0 | _aGroup theory. | |
650 | 0 | _aTopological groups. | |
650 | 0 | _aLie groups. | |
650 | 0 | _aNumber theory. | |
650 | 1 | 4 | _aMathematics. |
650 | 2 | 4 | _aNumber Theory. |
650 | 2 | 4 | _aTopological Groups, Lie Groups. |
650 | 2 | 4 | _aGroup Theory and Generalizations. |
700 | 1 |
_aHenniart, Guy. _eauthor. |
|
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783540314868 |
830 | 0 |
_aGrundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, _x0072-7830 ; _v335 |
|
856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/3-540-31511-X |
912 | _aZDB-2-SMA | ||
999 |
_c176410 _d176410 |