000 03300nam a22005055i 4500
001 978-3-540-31511-7
003 DE-He213
005 20160302162251.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 _a9783540315117
_9978-3-540-31511-7
024 7 _a10.1007/3-540-31511-X
_2doi
050 4 _aQA241-247.5
072 7 _aPBH
_2bicssc
072 7 _aMAT022000
_2bisacsh
082 0 4 _a512.7
_223
100 1 _aBushnell, Colin J.
_eauthor.
245 1 4 _aThe Local Langlands Conjecture for GL(2)
_h[electronic resource] /
_cby Colin J. Bushnell, Guy Henniart.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2006.
300 _aXII, 340 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aGrundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,
_x0072-7830 ;
_v335
505 0 _aSmooth Representations -- Finite Fields -- Induced Representations of Linear Groups -- Cuspidal Representations -- Parametrization of Tame Cuspidals -- Functional Equation -- Representations of Weil Groups -- The Langlands Correspondence -- The Weil Representation -- Arithmetic of Dyadic Fields -- Ordinary Representations -- The Dyadic Langlands Correspondence -- The Jacquet-Langlands Correspondence.
520 _aIf F is a non-Archimedean local field, local class field theory can be viewed as giving a canonical bijection between the characters of the multiplicative group GL(1,F) of F and the characters of the Weil group of F. If n is a positive integer, the n-dimensional analogue of a character of the multiplicative group of F is an irreducible smooth representation of the general linear group GL(n,F). The local Langlands Conjecture for GL(n) postulates the existence of a canonical bijection between such objects and n-dimensional representations of the Weil group, generalizing class field theory. This conjecture has now been proved for all F and n, but the arguments are long and rely on many deep ideas and techniques. This book gives a complete and self-contained proof of the Langlands conjecture in the case n=2. It is aimed at graduate students and at researchers in related fields. It presupposes no special knowledge beyond the beginnings of the representation theory of finite groups and the structure theory of local fields. It uses only local methods, with no appeal to harmonic analysis on adele groups.
650 0 _aMathematics.
650 0 _aGroup theory.
650 0 _aTopological groups.
650 0 _aLie groups.
650 0 _aNumber theory.
650 1 4 _aMathematics.
650 2 4 _aNumber Theory.
650 2 4 _aTopological Groups, Lie Groups.
650 2 4 _aGroup Theory and Generalizations.
700 1 _aHenniart, Guy.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783540314868
830 0 _aGrundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,
_x0072-7830 ;
_v335
856 4 0 _uhttp://dx.doi.org/10.1007/3-540-31511-X
912 _aZDB-2-SMA
999 _c176410
_d176410