Dissipative Solitons [electronic resource] / edited by Nail Akhmediev, Adrian Ankiewicz.

Contributor(s): Akhmediev, Nail [editor.] | Ankiewicz, Adrian [editor.] | SpringerLink (Online service)Material type: TextTextSeries: Lecture Notes in Physics ; 661Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005Description: XVIII, 448 p. 180 illus. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783540315285Subject(s): Physics | Quantum optics | Lasers | Photonics | Optics | Optoelectronics | Plasmons (Physics) | Engineering | Physics | Laser Technology, Photonics | Quantum Optics | Optics, Optoelectronics, Plasmonics and Optical Devices | Engineering, generalAdditional physical formats: Printed edition:: No titleDDC classification: 621.36 LOC classification: TA1671-1707TA1501-1820Online resources: Click here to access online
Contents:
Introduction -- Dissipative Solitons of the Swift-Hohenberg Equation -- Dissipative Magneto-Optic Solitons -- Dissipative Solitons in Semiconductor Optical Amplifiers -- Dissipative Solitons in Pattern-Forming Nonlinear Optical Systems: Cavity Solitons and Feedback Solitons -- Solitons in Laser Schemes with Saturable Absorption -- Spatial Resonator Solitons -- Dissipative Temporal Solitons -- Soliton Dynamics in Modelocked Lasers -- Temporal Multi-Soliton Complexes Generated by Passively Modelocked Lasers -- Dissipative Solitons in Reaction-Diffusion Systems -- Discrete Ginzburg-Landau Solitons -- Discrete Dissipative Solitons -- Nonlinear Schroedinger Equation with Dissipation: Two Models for Bose-Einstein Condensates -- Solitary Waves of Nonlinear Equations -- Stability Analysis of Pulses via the Evans Function: Dissipative Systems -- Bifurcations and Strongly Amplitude-Modulated Pulses of the Complex Ginzburg-Landau Equation.
In: Springer eBooksSummary: This volume is devoted to the exciting topic of dissipative solitons, i.e. pulses or spatially localised waves in systems exhibiting gain and loss. Examples are laser systems, nonlinear resonators and optical transmission lines. The physical principles and mathematical concepts are explained in a clear and concise way, suitable for students and young researchers. The similarities and differences in the notion of a soliton between dissipative systems and Hamiltonian and integrable systems are discussed, and many examples are given. The contributions are written by the world's leading experts in the field, making it a unique exposition of this emerging topic.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
e-Books e-Books Bangalore University Library
Available BUSP001760

Introduction -- Dissipative Solitons of the Swift-Hohenberg Equation -- Dissipative Magneto-Optic Solitons -- Dissipative Solitons in Semiconductor Optical Amplifiers -- Dissipative Solitons in Pattern-Forming Nonlinear Optical Systems: Cavity Solitons and Feedback Solitons -- Solitons in Laser Schemes with Saturable Absorption -- Spatial Resonator Solitons -- Dissipative Temporal Solitons -- Soliton Dynamics in Modelocked Lasers -- Temporal Multi-Soliton Complexes Generated by Passively Modelocked Lasers -- Dissipative Solitons in Reaction-Diffusion Systems -- Discrete Ginzburg-Landau Solitons -- Discrete Dissipative Solitons -- Nonlinear Schroedinger Equation with Dissipation: Two Models for Bose-Einstein Condensates -- Solitary Waves of Nonlinear Equations -- Stability Analysis of Pulses via the Evans Function: Dissipative Systems -- Bifurcations and Strongly Amplitude-Modulated Pulses of the Complex Ginzburg-Landau Equation.

This volume is devoted to the exciting topic of dissipative solitons, i.e. pulses or spatially localised waves in systems exhibiting gain and loss. Examples are laser systems, nonlinear resonators and optical transmission lines. The physical principles and mathematical concepts are explained in a clear and concise way, suitable for students and young researchers. The similarities and differences in the notion of a soliton between dissipative systems and Hamiltonian and integrable systems are discussed, and many examples are given. The contributions are written by the world's leading experts in the field, making it a unique exposition of this emerging topic.

There are no comments on this title.

to post a comment.

Powered by Koha